CN112537955B 有效 一种掺杂改性钪酸铋-钛酸铅-铁酸铋三元体系压电陶瓷及其偶极子发射换能器
技术领域 [0001]本发明属于压电陶瓷基换能器领域,具体涉及一种掺杂改性钪酸铋-钛酸铅-铁酸铋三元体系的压电陶瓷及其偶极子发射换能器。 背景技术 [0002]深海油田的复杂环境对油气探测装备提出了更高的要求。由于地热的影响,随着钻井深度的增加,井下温度逐步升高。比如南海深水区钻井地温梯度平均为3.91±0.74/100m(石油学报, 2009, 30(1): 27-32),那么当油井深度超过5000m时,井下温度将超过200℃的高温。同时,海深每增加100m,压强就增大1MPa,当深度超过5000米时,压强超过50个大气压。先进的声波测试技术可以提高油气资源的探测能力和深度,深海油气探井作业需要耐高温高压的压电换能器。国内中科院上海硅酸盐所研制的声波测井换能器不仅能够满足声学特性方面的要求,并且可在180℃高温下稳定工作 (http://www.sic.cas.cn/glbm/kjfzb/sdhzc/xmzs/201202/t20120220_3442478.html)。中国科学院大学陈秋颖等人制备的1-3型PZT/聚合物压电复合材料换能器,稳定工作的温度达到150℃(陈秋颖. 耐高温压电复合材料超声换能器研究. 中国科学院大学. 2014.)。山东大学的肖洪地等人制备的0.9PbTiO3-0.1Pb(Sn1/3Nb2/3)O3系压电陶瓷换能器在油井深度5250m(地温约166℃)处,性能稳定且具有较好的重复性(功能材料与器件学报, 2002, 8(4): 418-420.)。中国石油天然气集团公司授权的“偶极子发射换能器”实用新型专利,所提供的一种偶极子发射换能器环境条件满足175℃,140Mpa(ZL200620119171.7)。由此可见,目前研发的测井用换能器的工作温度依然低于200℃,随着海洋油气开发向深水进军,对高温高压下性能稳定而不失效的换能器的需求越发迫切。 [0003]压电换能器的最高工作温度主要由压电元件的最高极限工作温度所决定的,当压电材料工作温度超过居里温度(TC)时,将会失去压电效应。为了使压电材料和器件能够稳定地在高温极端环境下正常工作,压电材料的服役温度往往被限定为其TC的一半(0.5TC)。以Pb(Zr,Ti)O3(TC=320-350℃)为代表的弛豫铁电体,曾一度因为其优越的压电性能主宰了全球压电换能器市场。但PZT压电固溶体工作温度低,机械脆性大,且含铅量高。钪酸铋-钛酸铅(BiScO3-PbTiO3)固溶体具有与PZT压电固溶体相媲美的压电性能(d33=460pC/N)以及相对较高的TC(450℃)。但BiScO3-PbTiO3固溶体的介电损耗较大,持续在高温和高频率下工作会造成严重能量损耗。而铁酸铋(BiFeO3)为代表的高温压电陶瓷材料,具有高的居里温度(TC=825℃),但相对较小的压电常数(d33=27pC/N)限制了其应用。 发明内容 [0004]本发明的目的在于提供一种同时拥有高TC、优异压电性能和介电性能的陶瓷并制备偶极子发射换能器。为实现该目的,本发明构建了钪酸铋-钛酸铅-铁酸铋三元体系固溶体陶瓷,同时实现高的TC=470℃~500℃、高的压电常数d33>230pC/N以及显著降低的介电损耗tanδ=1.0%~1.2%,并基于该固溶体陶瓷制备了一种偶极子发射换能器,换能器可耐200℃的高温及50MPa的高静水压。 [0005]本发明是通过以下技术方案实现的: [0006]一种钪酸铋-钛酸铅-铁酸铋三元体系压电陶瓷,其化学式为:,其中0.30≤x≤0.33, 0.05≤y≤0.10,0.02≤a≤0.05, 0.01≤b≤0.03,0.01≤c≤0.03。 [0007]上述钪酸铋-钛酸铅-铁酸铋三元体系压电陶瓷的制备方法,具体包含以下步骤: [0008](1)按化学组成的化学计量比称取原料,所述原料为Bi、Sc、Pb、Ti、La、Fe、Ga、Mn的氧化物,通过湿法球磨混合均匀; [0009](2)将球磨后的混合料烘干,预烧; [0010](3)将预烧的粉料研磨过筛,加入粘合剂造粒,压制成型,并进行排胶处理得到陶瓷素胚; [0011](4)将陶瓷素胚高温烧结,得到陶瓷片; [0012](5)将烧结完成的陶瓷片被银,烧结; [0013](6)将被银后的陶瓷片进行电极化。 [0014]上述所述步骤(1)中为了弥补Bi、Pb元素的挥发,Bi、Pb氧化物分别过量3-5%和5-10%,湿法球磨混合为加入乙醇,乙醇的加入量为25mL/10g混合料。 [0015]上述所述步骤(2)中烘干温度为60-70℃,预烧温度为800℃,预烧时间为2h。 [0016]上述所述步骤(3)中预烧粉料研磨过60目筛,粘合剂选用含量为5%的PVA水溶液或石蜡,排胶温度为500-600℃,时间为2-4h,陶瓷素胚的尺寸为长20mm,宽10mm,厚1.2mm。 [0017]上述所述步骤(4)中高温烧结的温度为1050℃,烧结时间为2h。 [0018]上述所述步骤(5)中被银烧结的温度为560℃,时间为0.5h。 [0019]上述所述步骤(6)中电极化在硅油中进行,极化场强为4.5-5kV/mm,极化温度为80℃,极化时间为0.5h。 [0020]一种偶极子发射换能器,包括上述压电陶瓷、铜片、不锈钢骨架、高温引线。 [0021]所述长条状压电振子由长条状压电陶瓷片与铜片粘接组成,高温引线分别与压电陶瓷片的上下电极面连接。 [0022]所述四个弯曲振动的条形振子围绕长方体骨架,每个压电振子占据长方体骨架的一个侧面,其长度方向的两端处于嵌定状态。 [0023]所述的换能器为溢流结构,不受外部压力的限制。 [0024]有益效果 [0025]本发明制备的压电陶瓷具有高的居里温度(TC=470℃~500℃)、优异的压电性能(d33>230pC/N)及低的介电损耗(tanδ=1.0%~1.2%),使其可以被应用于200℃的高温环境,基于该压电陶瓷制备的偶极子发射换能器可以满足200℃深海油田的勘测,为深海油气资源的勘探提供了一种切实可行的换能器。 附图说明 [0026]图1为0.33Bi0.991La0.009ScO3-0.62PbTiO3-0.05Bi0.999La0.001Fe0.95Ga0.05O3-1mol%Mn的XRD图。 [0027]图2为0.33Bi0.991La0.009ScO3-0.62PbTiO3-0.05Bi0.999La0.001Fe0.95Ga0.05O3-1mol%Mn的d*33随温度的变化图。 [0028]图3为0.33Bi0.991La0.009ScO3-0.62PbTiO3-0.05Bi0.999La0.001Fe0.95Ga0.05O3-1mol%Mn的介电温谱图。 [0029]图4为偶极子发射换能器单一压电振子。 [0030]图5为偶极子发射换能器示意图。 [0031]图6(a)为换能器的阻抗频谱随温度的变化;(b)为谐振频率随温度的变化曲线。 [0032]图7为换能器的阻抗频谱在高温前后的变化。 [0033]图中:1-铜片;2-BS-PT-BF陶瓷片;3-高温引线;4-不锈钢骨架。 具体实施方式 [0034]下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。 [0035]实施例1 [0036]制备符合化学组成0.33Bi0.991La0.009ScO3-0.62PbTiO3-0.05Bi0.999La0.001Fe0.95Ga0.05O3-1mol%Mn的压电陶瓷。 [0037]以分析纯的原料Bi2O3、Sc2O3、PbO、TiO2、La2O3、Fe2O3、Ga2O3、MnO2按照化学计量比配料,Bi、Pb氧化物分别过量3%和10%,加入乙醇的量为25mL,放入球磨罐中球磨24小时混合均匀;混合均匀后将混合料放入烘箱中,60℃烘干;烘干后的混合料研磨并过60目筛;在800℃温度下预烧2h;预烧完成的料加入0.5mLPVA水溶液并研磨过100目筛完成造粒。用压片机将造粒完成的预烧料压制成长20mm,宽10mm,厚1.2mm的长薄片,在600℃温度下进行排胶得到陶瓷素胚,排胶时间为2h;然后将素胚于1050℃下烧结2h得到陶瓷片;烧结好的陶瓷片两面抛光,被Ag电极烧银;在80℃的硅油中施加4.5kV/mm的直流电场并保持0.5h,得到0.33Bi0.991La0.009ScO3-0.62PbTiO3-0.05Bi0.999La0.001Fe0.95Ga0.05O3-1mol%Mn的压电陶瓷成品;陶瓷的性能如下:TC =500℃,d33=270pC/N,tanδ=1.0%。 [0038]制备偶极子发射换能器。 [0039]将制备好的压电陶瓷片通过导电胶粘接到铜片上,陶瓷片处于铜片的中间,将高温引线分别从陶瓷片的上电极面和铜片上引出组成压电振子;通过绝缘螺钉将四个压电振子固定于不锈钢骨架的四个侧面;换能器在空气中的谐振频率约为2~3kHz,换能器可以耐200℃高温,在深海水压试验装置(sup-hd-10000)上可耐50MPa的高静水压。 [0040]实施例2: [0041]制备符合化学组成0.3Bi0.992La0.008ScO3-0.6PbTiO3-0.1Bi0.998La0.002Fe0.95Ga0.05O3-1mol%Mn的压电陶瓷。 [0042]以分析纯的原料Bi2O3、Sc2O3、PbO、TiO2、La2O3、Fe2O3、Ga2O3、MnO2按照化学计量比配料,Bi、Pb氧化物分别过量5%和5%,加入乙醇的量为25mL,放入球磨罐中球磨24小时混合均匀;混合均匀后将混合料放入烘箱中,60℃烘干;烘干后的混合料研磨并过60目筛;在800℃温度下预烧2h;预烧完成的料加入0.5mL PVA水溶液并研磨过100目筛完成造粒。用压片机将造粒完成的预烧料压制成长20mm,宽10mm,厚1.2mm的长薄片,在600℃温度下进行排胶得到陶瓷素胚,排胶时间为2h;然后将素胚于1050℃下烧结2h得到陶瓷片;烧结好的陶瓷片两面抛光,被Ag电极烧银;在80℃的硅油中施加4.5kV/mm的直流电场并保持0.5h,得到0.3Bi0.992La0.008ScO3-0.6PbTiO3-0.1Bi0.998La0.002Fe0.95Ga0.05O3-1mol%Mn的压电陶瓷成品;陶瓷的性能如下:TC =470℃,d33=238 pC/N,tanδ=1.2%。 [0043]制备偶极子发射换能器。 [0044]将制备好的压电陶瓷片通过导电胶粘接到铜片上,陶瓷片处于铜片的中间,将高温引线分别从陶瓷片的上电极面和铜片上引出组成压电振子;通过绝缘螺钉将四个压电振子固定于不锈钢骨架的四个侧面;换能器在空气中的谐振频率约为2~3kHz,换能器可耐200℃高温,在深海水压试验装置(sup-hd-10000)上可耐50MPa的高静水压。 [0045]显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
现在,一起体验智慧芽的产品和服务
自动注册,无需人工审核,即可立即开始查询专利
立即注册
澳门正版图库

AI助手